Effect of replacing inorganic trace minerals at lower organic levels on growth performance, blood parameters, antioxidant status, immune indexes, and fecal mineral excretion in weaned piglets

Trop Anim Health Prod. 2021 Jan 14;53(1):121. doi: 10.1007/s11250-021-02561-1.

Abstract

Organic trace minerals (OTMs) have the potential to replace inorganic trace minerals (ITMs), but the degree to which the dietary levels can be reduced is not well defined. This study aimed to investigate the effect of replacing of ITMs with lower levels of OTMs on growth performance, blood parameters, antioxidant status, and immune indexes in weaned piglets. The experiment was conducted in a subtropical city in Guangdong Province in South China (subtropical climate) from July to September 2018. A total of 600 pigs with an average initial BW of 8.90 kg were allotted by gender and weight to 5 treatments with 6 replicate pens per treatment. Experimental treatments: (A) Control group (a basal diet with iron, copper, manganese, and zinc from sulfates and sodium selenite providing commercially utilized levels in China of 150, 25, 40, 150, and 0.5 mg/kg, respectively). (B) 1/2 ITM group (inorganic trace minerals providing 1/2 control group levels). (C) 1/2 OTM group (1/2 control group trace mineral levels with manganese, iron, zinc, and selenium from Sel-Plex® and Cu from Bioplex®). (D) 1/3 ITM group (1/3 control group trace mineral levels from inorganic forms). (E) 1/3 OTM group (1/3 control group trace mineral levels from organic forms). The results suggest no significant effects of trace mineral sources or levels, on average daily gain (ADG) and average daily feed intake (ADFI) among different treatments during the entire experiment. The level of zinc in serum was significantly decreased in the 1/3 ITM group. The 1/3 OTM group had a significantly higher (P < 0.05) immunoglobulin G (IgG) level in serum. Fecal mineral excretion decreased significantly (P < 0.05) when decreased dietary levels of trace minerals were included at 1/2 and 1/3 levels regardless of sources. Fecal concentrations of zinc excretion were lower (P < 0.05) with 1/2 OTM supplementation than 1/2 ITMs. The present study shows that replacing high doses of ITMs with low concentrations (1/3) of OTMs does not adversely affect the growth performance of piglets. At low levels, total replacement of ITMs with OTMs improved IgG and reduced fecal excretion of copper, zinc, iron, and manganese, thereby mitigating environmental pollution.

Keywords: Fecal mineral excretion; Growth performance; Immune indexes; Piglets; Trace minerals.

MeSH terms

  • Animal Feed / analysis
  • Animals
  • Antioxidants
  • China
  • Copper
  • Diet / veterinary
  • Dietary Supplements
  • Minerals / analysis
  • Swine
  • Trace Elements*

Substances

  • Antioxidants
  • Minerals
  • Trace Elements
  • Copper