Efficient iron utilization compensates for loss of extracellular matrix of ovarian cancer spheroids

Free Radic Biol Med. 2021 Feb 20:164:369-380. doi: 10.1016/j.freeradbiomed.2021.01.001. Epub 2021 Jan 12.

Abstract

Metastasis is the major cause of death in women with advanced ovarian cancer. Epithelial ovarian cancer cells can dissociate directly from extracellular matrix (ECM) and form spheroids to spread through the peritoneal cavity. Loss of ECM hinders the survival of ECM-detached epithelial cells. It is still largely unknown how ovarian cancer spheroids maintain their viability after loss of ECM. We find that spheroids derived either from ovarian cancer ascites or cell lines are iron-replete. In accordance with iron-replete condition, proteins involved in iron uptake, transport and storage including divalent metal ion transporter 1 (DMT1), transferrin receptor 1 (TFR1), ferritin, poly(rC)-binding proteins 1 and 2 (PCBP1 and 2) and nuclear factor E2-related factor 2 (NRF2) all increase in ovarian cancer spheroids. Genes linking iron homeostasis and lipid metabolism including stearoyl coenzyme A desaturase 1 (SCD1) are up-regulated in ovarian cancer spheroids. The product of SCD1 oleic acid can restore the viability of ovarian cancer spheroids inhibited by deprivation of iron. Extracellular signal-regulated kinase (ERK) activation contributes to autophagy activation in ovarian cancer spheroids. Impairment of autophagy by U0126 or Olaparib results in lysosomal iron accumulation and decrease of the cytosolic labile iron pool, leading to reduction of SCD1, lipid level and cell viability. Combination of U0126 and Olaparib has synergistic cytotoxicity toward ovarian cancer spheroids. Our findings reveal that ovarian cancer spheroids develop efficient iron utilization system to survive. Targeting iron utilization in ovarian cancer spheroids may have the potential to become new treatment strategies for ovarian cancer metastasis.

Keywords: Autophagy; Iron; Lipid; Olaparib; Ovarian cancer spheroids; SCD1; U0126; Viability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Ovarian Epithelial / genetics
  • Cell Line, Tumor
  • Extracellular Matrix
  • Female
  • Humans
  • Iron*
  • Ovarian Neoplasms* / drug therapy
  • Ovarian Neoplasms* / genetics
  • Spheroids, Cellular

Substances

  • Iron