Cumulative effects of natural and anthropogenic disturbances on the forest carbon balance in the oil sands region of Alberta, Canada; a pilot study (1985-2012)

Carbon Balance Manag. 2021 Jan 19;16(1):3. doi: 10.1186/s13021-020-00164-1.

Abstract

Background: Assessing cumulative effects of anthropogenic and natural disturbances on forest carbon (C) stocks and fluxes, because of their relevance to climate change, is a requirement of environmental impact assessments (EIAs) in Canada. However, tools have not been developed specifically for these purposes, and in particular for the boreal forest of Canada, so current forest C assessments in EIAs take relatively simple approaches. Here, we demonstrate how an existing tool, the Generic Carbon Budget Model (GCBM), developed for national and international forest C reporting, was used for an assessment of the cumulative effects of anthropogenic and natural disturbances to support EIA requirements. We applied the GCBM to approximately 1.3 million ha of upland forest in a pilot study area of the oil sands region of Alberta that has experienced a large number of anthropogenic (forestry, energy sector) and natural (wildfire, insect) disturbances.

Results: Over the 28 years, 25% of the pilot study area was disturbed. Increasing disturbance emissions, combined with declining net primary productivity and reductions in forest area, changed the study area from a net C sink to a net C source. Forest C stocks changed from 332.2 Mt to 327.5 Mt, declining by 4.7 Mt at an average rate of 0.128 tC ha-1 yr-1. The largest cumulative areas of disturbance were caused by wildfire (139,000 ha), followed by the energy sector (110,000 ha), insects (33,000 ha) and harvesting (31,000 ha) but the largest cumulative disturbance emissions were caused by the energy sector (9.5 Mt C), followed by wildfire (5.5 Mt C), and then harvesting (1.3 Mt C).

Conclusion: An existing forest C model was used successfully to provide a rigorous regional cumulative assessment of anthropogenic and natural disturbances on forest C, which meets requirements of EIAs in Canada. The assessment showed the relative importance of disturbances on C emissions in the pilot study area, but their relative importance is expected to change in other parts of the oil sands region because of its diversity in disturbance types, patterns and intensity. Future assessments should include peatland C stocks and fluxes, which could be addressed by using the Canadian Model for Peatlands.

Keywords: Cumulative effects; Environmental impact assessment; GCBM; Greenhouse gases; Model.