A novel terpene synthase controls differences in anti-aphrodisiac pheromone production between closely related Heliconius butterflies

PLoS Biol. 2021 Jan 19;19(1):e3001022. doi: 10.1371/journal.pbio.3001022. eCollection 2021 Jan.

Abstract

Plants and insects often use the same compounds for chemical communication, but not much is known about the genetics of convergent evolution of chemical signals. The terpene (E)-β-ocimene is a common component of floral scent and is also used by the butterfly Heliconius melpomene as an anti-aphrodisiac pheromone. While the biosynthesis of terpenes has been described in plants and microorganisms, few terpene synthases (TPSs) have been identified in insects. Here, we study the recent divergence of 2 species, H. melpomene and Heliconius cydno, which differ in the presence of (E)-β-ocimene; combining linkage mapping, gene expression, and functional analyses, we identify 2 novel TPSs. Furthermore, we demonstrate that one, HmelOS, is able to synthesise (E)-β-ocimene in vitro. We find no evidence for TPS activity in HcydOS (HmelOS ortholog of H. cydno), suggesting that the loss of (E)-β-ocimene in this species is the result of coding, not regulatory, differences. The TPS enzymes we discovered are unrelated to previously described plant and insect TPSs, demonstrating that chemical convergence has independent evolutionary origins.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alkyl and Aryl Transferases / genetics
  • Alkyl and Aryl Transferases / metabolism*
  • Animals
  • Aphrodisiacs / antagonists & inhibitors*
  • Avoidance Learning / drug effects
  • Butterflies* / genetics
  • Butterflies* / metabolism
  • Evolution, Molecular
  • Female
  • Genes, Insect
  • Male
  • Pheromones / metabolism*
  • Pheromones / pharmacology
  • Phylogeny
  • Sexual Behavior, Animal / drug effects
  • Species Specificity

Substances

  • Aphrodisiacs
  • Pheromones
  • Alkyl and Aryl Transferases
  • terpene synthase

Grants and funding

KD and AO were supported by the Natural Research Council Doctoral Training Partnership https://nercdtp.esc.cam.ac.uk/ (grant NE/L002507/1) and KD additionally by a Smithsonian Tropical Research Institute Short Term Fellowship https://stri.si.edu/academic-programs/fellowships. KJRPB, IAW, RMM and CDJ were supported by the European Research Council https://erc.europa.eu (grant 339873 SpeciationGenetics). RMM was also supported by a Deutsche Forschungsgemeinschaft Emmy Noether fellowship http://www.dfg.de/en/research_funding/programmes/individual/emmy_noether/index.html (grant GZ:ME4845/1-1). PR was supported by the Jane and Aatos Erkko Foundation https://jaes.fi/en/. AP was supported by a Natural Research Council studentship (PFZE/063) and a Smithsonian Tropical Research Institute Short Term Fellowship https://stri.si.edu/academic-programs/fellowships. JWD was funded by a Herchel Smith Postdoctoral Research Fellowship https://www.herchelsmith.cam.ac.uk/postdoctoral-fellowships and a Smithsonian Tropical Research Institute Fellowship https://stri.si.edu/academic-programs/fellowships. WOM was supported by the Smithsonian Tropical Research Institute https://stri.si.edu/academic-programs/fellowships and National Science Foundation https://www.nsf.gov/funding/index.jsp (grant DEB 1257689). SS thanks the Deutsche Forschungsgemeinschaft https://www.dfg.de/en/ (grant Schu984/12-1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.