Alterations of DNA damage repair in cancer: from mechanisms to applications

Ann Transl Med. 2020 Dec;8(24):1685. doi: 10.21037/atm-20-2920.

Abstract

DNA damage repair (DDR) pathways are essential to ensure the accurate transmission of genetic material. However, different endogenous and exogenous factors challenge genomic integrity. Mechanisms involved in the alterations of DDR pathways mainly include genetic inactivation and epigenetic mechanisms. The development and progression of carcinomas are closely associated with DDR pathway aberrations, including the epigenetic silencing of gene O6-alkylguanine-DNA methyltransferase (MGMT); deficiencies of mismatch repair (MMR) genes, including MutL homolog 1 (MLH1), MutS protein homologue (MSH)-2 (MSH2), MSH6, and PMS1 homolog 2; the mismatch repair system component (PMS2); and mutations of homologous recombination repair (HRR) genes, such as the breast cancer susceptibility gene 1/2 (BRCA1/2). Understanding the underlying mechanisms and the correlations between alterations to DDR pathways and cancer could improve the efficacy of antitumor therapies. Emerging evidence suggests that survival is higher in patients with DDR-deficient tumors than in those with DDR-proficient tumors. Thus, DDR alterations play a predictive and prognostic role in anticancer therapies. Theoretical studies on the co-administration of DDR inhibitors and other anticancer therapies, including chemotherapy, radiotherapy, immunotherapy, endocrine therapy, and epigenetic drugs, hold promise for cancer treatments. In this review, we focus on the basic mechanisms, characteristics, current applications, and combination strategies of DDR pathways in the anticancer field.

Keywords: Anticancer therapy; DNA damage repair pathway (DDR pathway); DNA repair; cancer; immunotherapy.

Publication types

  • Review