Ticks are considered the most important vectors in veterinary medicine with a profound impact on animal health worldwide, as well as being key vectors of diseases affecting household pets. The leading strategy applied to dog tick control is the continued use of acaricides. However, this approach is not sustainable due to surging tick resistance, growing public concern over pesticide residues in food and in the environment, and the rising costs associated with their development. In contrast, tick vaccines are a cost-effective and environmentally friendly alternative against tick-borne diseases by controlling vector infestations and reducing pathogen transmission. These premises have encouraged researchers to develop an effective vaccine against ticks, with several proteins having been characterized and used in native, synthetic, and recombinant forms as antigens in immunizations. The growing interaction between domestic pets and people underscores the importance of developing new tick control measures that require effective screening platforms applied to vaccine development. However, as reviewed in this paper, very little progress has been made in controlling ectoparasite infestations in pets using the vaccine approach. The control of tick infestations and pathogen transmission could be obtained through immunization programs aimed at reducing the tick population and interfering in the pathogenic transmission that affects human and animal health on a global scale.
Keywords: Dog; Resistance; Tick; Tick-borne diseases; Vaccine.
Copyright © 2020 Elsevier GmbH. All rights reserved.