Type 2 diabetes (T2D) is a public health problem with a rising incidence worldwide. In this study, a potential new biomarker for T2D and mechanisms underlying the hypoglycemic effects of Enteromorpha prolifera oligosaccharide were investigated. Tandem mass tag labeling with LC-MS/MS was used to identify the differentially expressed proteins (DEPs) between the jejunum of diabetic rats and control rats. Correlations between glycometabolic parameters and DEPs were revealed by a network analysis. The expression levels of target genes in key metabolic pathways were further evaluated to identify candidate biomarkers. Among 6810 total proteins, approximately 88 % were quantified, of which 148 DEPs with a fold change of <0.83 or>1.2 and a corrected p-value of <0.05 were identified. A KEGG enrichment analysis indicated that the hypoglycaemic effects of E. prolifera oligosaccharide involved the PI3K/AKT and extracellular matrix receptor interaction signaling pathways. More importantly, Col1a1 was the most significant gene in the extracellular matrix receptor interaction pathway and was linked to hypoglycaemic activity for the first time. Thus, Col1a1 is a novel potential therapeutic target for alleviating T2D.
Keywords: COL1A1; Enteromorpha proliferao; Ligosaccharide; Proteomics; Type 2 diabetes.
Copyright © 2021 Elsevier Ltd. All rights reserved.