Solution Structure, Dynamics, and New Antifungal Aspects of the Cysteine-Rich Miniprotein PAFC

Int J Mol Sci. 2021 Jan 25;22(3):1183. doi: 10.3390/ijms22031183.

Abstract

The genome of Penicillium chrysogenum Q176 contains a gene coding for the 88-amino-acid (aa)-long glycine- and cysteine-rich P. chrysogenum antifungal protein C (PAFC). After maturation, the secreted antifungal miniprotein (MP) comprises 64 aa and shares 80% aa identity with the bubble protein (BP) from Penicillium brevicompactum, which has a published X-ray structure. Our team expressed isotope (15N, 13C)-labeled, recombinant PAFC in high yields, which allowed us to determine the solution structure and molecular dynamics by nuclear magnetic resonance (NMR) experiments. The primary structure of PAFC is dominated by 14 glycines, and therefore, whether the four disulfide bonds can stabilize the fold is challenging. Indeed, unlike the few published solution structures of other antifungal MPs from filamentous ascomycetes, the NMR data indicate that PAFC has shorter secondary structure elements and lacks the typical β-barrel structure, though it has a positively charged cavity and a hydrophobic core around the disulfide bonds. Some parts within the two putative γ-core motifs exhibited enhanced dynamics according to a new disorder index presentation of 15N-NMR relaxation data. Furthermore, we also provided a more detailed insight into the antifungal spectrum of PAFC, with specific emphasis on fungal plant pathogens. Our results suggest that PAFC could be an effective candidate for the development of new antifungal strategies in agriculture.

Keywords: Penicillium chrysogenum; antifungal protein PAFC; dynamics; nuclear magnetic resonance; plant protection; solution structure; γ-core motif.

MeSH terms

  • Amino Acid Motifs
  • Amino Acid Sequence
  • Antifungal Agents / chemistry*
  • Antifungal Agents / pharmacology*
  • Fungal Proteins / chemistry*
  • Fungal Proteins / pharmacology*
  • Microbial Sensitivity Tests
  • Molecular Conformation*
  • Molecular Dynamics Simulation*
  • Molecular Structure*
  • Penicillium
  • Penicillium chrysogenum
  • Plant Diseases / microbiology
  • Plant Diseases / prevention & control
  • Protein Structure, Secondary
  • Thermodynamics

Substances

  • Antifungal Agents
  • Fungal Proteins

Supplementary concepts

  • Penicillium brevicompactum