Schizophrenia is a severe mental disease characterized with positive symptoms, negative symptoms, and cognitive impairments. Although recent genome-wide association studies (GWASs) have identified over 145 risk loci for schizophrenia, pinpointing the causal variants and genes at the reported loci and elucidating their roles in schizophrenia remain major challenges. Here we identify a functional single-nucleotide polymorphism (SNP; rs213237) in ZNF323 promoter by using functional fine-mapping. We found that allelic differences at rs213237 affected the ZNF323 promoter activity significantly. Consistently, expression quantitative trait loci (eQTL) analysis showed that rs213237 was significantly associated with ZNF323 expression in diverse human brain tissues, suggesting that rs213237 may contribute to schizophrenia risk through regulating ZNF323 expression. Interestingly, we found that ZNF323 protein was localized in the nucleus and knockdown of ZNF323 in macaque neural stem cells (mNSCs) significantly impaired proliferation and survival of mNSCs. We further showed that stable knockdown of ZNF323 in SH-SY5Y cells resulted in significant decrease of the tyrosine hydroxylase (TH) protein expression. Finally, transcriptome analysis revealed that ZNF323 may regulate pivotal schizophrenia risk genes (including VIPR2 and NPY) and schizophrenia-associated pathways (including PI3K-AKT and NOTCH signaling pathways), suggesting that ZNF323 may be a major regulator of schizophrenia risk genes. Our study reveals how a genetic variant in ZNF323 promoter contributes to schizophrenia risk through regulating ZNF323 expression. More importantly, our findings demonstrate that ZNF323 may have a pivotal role in schizophrenia pathogenesis through regulating schizophrenia risk genes and schizophrenia-associated biological processes (including neurodevelopment, PI3K-AKT, and NOTCH signaling pathways).
Keywords: ZNF323; eQTL; fine-mapping; macaque neural stem cells; rs213237; schizophrenia risk gene.
© 2021 Wiley Periodicals LLC.