The ability to precisely control nanocrystal (NC) shape and composition is useful in many fields, including catalysis and plasmonics. Seed-mediated strategies have proven effective for preparing a wide variety of structures, but a poor understanding of how to selectively grow corners, edges, and facets has limited the development of a general strategy to control structure evolution. Here, we report a universal synthetic strategy for directing the site-specific growth of anisotropic seeds to prepare a library of designer nanostructures. This strategy leverages nucleation energy barrier profiles and the chemical potential of the growth solution to control the site-specific growth of NCs into exotic shapes and compositions. This strategy can be used to not only control where growth occurs on anisotropic seeds but also control the exposed facets of the newly grown regions. NCs of many shapes are synthesized, including over 10 here-to-fore never reported NCs and, in principle, many others are possible.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).