Preparation of TiO2/WO3/C/N Composite Nanofibers by Electrospinning Using Precursors Soluble in Water and Their Photocatalytic Activity in Visible Light

Nanomaterials (Basel). 2021 Feb 1;11(2):351. doi: 10.3390/nano11020351.

Abstract

Extending the absorption range of TiO2 nanofibers to visible light is a great improvement of the photocatalytic property of TiO2. In this study, TiO2/WO3/C/N nanofibers were prepared by electrospinning using precursors soluble in water then annealing in argon. Titanium(IV) bis(ammonium lactato)dihydroxide (TiBALDH) and ammonium metatungstate (AMT) were used as the precursor for TiO2 and WO3 respectively. Different volume ratios of the precursors were added to a solution of PVP before electrospinning. The fibers were studied by XPS, SEM-EDX, TEM, FTIR, XRD, Raman spectroscopy and UV-VIS diffuse reflectance spectroscopy (DRS). The photocatalytic degradation of methylene blue by the fibers in visible light was investigated. The fibers had anatase TiO2 and monoclinic WO3. Based on UV-VIS DRS and Kubelka-Munk function the fibers could absorb visible light. Moreover, 100% TiBALDH had an indirect band gap of 2.9 eV, and the band gap decreased with increase in AMT, i.e., for 0% TiBALDH, band gap was 2.4 eV. The fibers degraded methylene blue dye in visible light, and 90% TiBALDH had the highest photocatalytic activity, i.e., it degraded 40% of the dye after 240 min.

Keywords: TiO2 precursor soluble in water; composite nanofibers; electrospinning; photocatalysis.