Josephson Inductance as a Probe for Highly Ballistic Semiconductor-Superconductor Weak Links

Phys Rev Lett. 2021 Jan 22;126(3):037001. doi: 10.1103/PhysRevLett.126.037001.

Abstract

We present simultaneous measurements of Josephson inductance and dc transport characteristics of ballistic Josephson junctions based upon an epitaxial Al-InAs heterostructure. The Josephson inductance at finite current bias directly reveals the current-phase relation. The proximity-induced gap, the critical current and the average value of the transparency τ[over ¯] are extracted without need for phase bias, demonstrating, e.g., a near-unity value of τ[over ¯]=0.94. Our method allows us to probe the devices deeply in the nondissipative regime, where ordinary transport measurements are featureless. In perpendicular magnetic field the junctions show a nearly perfect Fraunhofer pattern of the critical current, which is insensitive to the value of τ[over ¯]. In contrast, the signature of supercurrent interference in the inductance turns out to be extremely sensitive to τ[over ¯].