The siphonaxanthin-siphonein-chlorophyll-a/b-binding protein (SCP), a trimeric light-harvesting complex isolated from photosystem II of the siphonous green alga Codium fragile, binds the carotenoid siphonaxanthin (Sx) and/or its ester siphonein in place of lutein, in addition to chlorophylls a/b and neoxanthin. SCP exhibits a higher content of chlorophyll b (Chl-b) than its counterpart in green plants, light-harvesting complex II (LHCII), increasing the relative absorption of blue-green light for photosynthesis. Using low temperature absorption and resonance Raman spectroscopies, we reveal the presence of two non-equivalent Sx molecules in SCP, and assign their absorption peaks at 501 and 535 nm. The red-absorbing Sx population exhibits a significant distortion that is reminiscent of lutein 2 in trimeric LHCII. Unexpected enhancement of the Raman modes of Chls-b in SCP allows an unequivocal description of seven to nine non-equivalent Chls-b, and six distinct Chl-a populations in this protein.
Keywords: Codium fragile; Resonance Raman; SCP; Siphonaxanthin; Siphonein; Siphonous green algae.
Copyright © 2021 Elsevier B.V. All rights reserved.