Purpose: While immune checkpoint inhibitors (ICI) have revolutionized the treatment of cancer by producing durable antitumor responses, only 10%-30% of treated patients respond and the ability to predict clinical benefit remains elusive. Several studies, small in size and using variable analytic methods, suggest the gut microbiome may be a novel, modifiable biomarker for tumor response rates, but the specific bacteria or bacterial communities putatively impacting ICI responses have been inconsistent across the studied populations.
Experimental design: We have reanalyzed the available raw 16S rRNA amplicon and metagenomic sequencing data across five recently published ICI studies (n = 303 unique patients) using a uniform computational approach.
Results: Herein, we identify novel bacterial signals associated with clinical responders (R) or nonresponders (NR) and develop an integrated microbiome prediction index. Unexpectedly, the NR-associated integrated index shows the strongest and most consistent signal using a random effects model and in a sensitivity and specificity analysis (P < 0.01). We subsequently tested the integrated index using validation cohorts across three distinct and diverse cancers (n = 105).
Conclusions: Our analysis highlights the development of biomarkers for nonresponse, rather than response, in predicting ICI outcomes and suggests a new approach to identify patients who would benefit from microbiome-based interventions to improve response rates.
©2021 American Association for Cancer Research.