Monitoring blood potassium concentration in hemodialysis patients by quantifying T-wave morphology dynamics

Sci Rep. 2021 Feb 16;11(1):3883. doi: 10.1038/s41598-021-82935-5.

Abstract

We investigated the ability of time-warping-based ECG-derived markers of T-wave morphology changes in time ([Formula: see text]) and amplitude ([Formula: see text]), as well as their non-linear components ([Formula: see text] and [Formula: see text]), and the heart rate corrected counterpart ([Formula: see text]), to monitor potassium concentration ([Formula: see text]) changes ([Formula: see text]) in end-stage renal disease (ESRD) patients undergoing hemodialysis (HD). We compared the performance of the proposed time-warping markers, together with other previously proposed [Formula: see text] markers, such as T-wave width ([Formula: see text]) and T-wave slope-to-amplitude ratio ([Formula: see text]), when computed from standard ECG leads as well as from principal component analysis (PCA)-based leads. 48-hour ECG recordings and a set of hourly-collected blood samples from 29 ESRD-HD patients were acquired. Values of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] were calculated by comparing the morphology of the mean warped T-waves (MWTWs) derived at each hour along the HD with that from a reference MWTW, measured at the end of the HD. From the same MWTWs [Formula: see text] and [Formula: see text] were also extracted. Similarly, [Formula: see text] was calculated as the difference between the [Formula: see text] values at each hour and the [Formula: see text] reference level at the end of the HD session. We found that [Formula: see text] and [Formula: see text] showed higher correlation coefficients with [Formula: see text] than [Formula: see text]-Spearman's ([Formula: see text]) and Pearson's (r)-and [Formula: see text]-Spearman's ([Formula: see text])-in both SL and PCA approaches being the intra-patient median [Formula: see text] and [Formula: see text] in SL and [Formula: see text] and [Formula: see text] in PCA respectively. Our findings would point at [Formula: see text] and [Formula: see text] as the most suitable surrogate of [Formula: see text], suggesting that they could be potentially useful for non-invasive monitoring of ESRD-HD patients in hospital, as well as in ambulatory settings. Therefore, the tracking of T-wave morphology variations by means of time-warping analysis could improve continuous and remote [Formula: see text] monitoring of ESRD-HD patients and flagging risk of [Formula: see text]-related cardiovascular events.

Publication types

  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Aged
  • Aged, 80 and over
  • Electrocardiography*
  • Female
  • Heart Rate
  • Humans
  • Kidney Failure, Chronic / blood*
  • Kidney Failure, Chronic / physiopathology
  • Male
  • Middle Aged
  • Models, Cardiovascular*
  • Potassium / blood*
  • Principal Component Analysis

Substances

  • Potassium