Microalgae have received continued attention as a potential source for biofuel production. However, the lack of suitable strains that provide a lipid-rich biomass and tolerate harsh condition inhibits their industrial application. This report describes an effort to transform Synechocystis sp. with genes encoding acetyl-CoA carboxylase (ACC), a key regulatory enzyme in the lipogenesis pathway, from the white mustard plant (Sinapis alba) and the bacterium Escherichia coli DH5α using chitosan nanoparticles. Although a recombinant plasmid encoding S. alba ACC failed to express, successful transformation was achieved with a recombinant plasmid encoding E. coli DH5α ACC. The successful transformant, Synechocystis sp. PAK13, exhibited increased ACC expression compared with its wild-type parent (11.8 vs. 7.2 ng), which significantly increased its lipid content (by 3.6-fold). Synechocystis sp. PAK13 also exhibited a significant (20%) reduction in photosynthetic pigments, a 1.52-fold higher glucose content and a 3.5-fold lower sucrose content than the wild-type. In conclusion, this report introduces a useful strategy to overexpress the ACC gene in microalgae, creating strains with improved lipid production that are suited to industrial applications.
Keywords: Synechocystis sp. PAK13; acetyl-CoA carboxylase; lipogenesis; metabolic engineering.
© 2021 Wiley-VCH GmbH.