Magnetoelectric Response of Antiferromagnetic CrI3 Bilayers

Nano Lett. 2021 Mar 10;21(5):1948-1954. doi: 10.1021/acs.nanolett.0c04242. Epub 2021 Feb 18.

Abstract

We predict that layer antiferromagnetic bilayers formed from van der Waals (vdW) materials with weak interlayer versus intralayer exchange coupling have strong magnetoelectric response that can be detected in dual-gated devices where internal displacement fields and carrier densities can be varied independently. We illustrate this strong temperature-dependent magnetoelectric response in bilayer CrI3 at charge neutrality by calculating the gate voltage-dependent total magnetization through Monte Carlo simulations and mean-field solutions of the anisotropic Heisenberg model informed from density functional theory and experimental data and present a simple model for electrical control of magnetism by electrostatic doping.

Keywords: 2D magnets; Antiferromagnetic Bilayer; CrI3; Magnetoelectric Effect; van der Waals Material.