Cerebrotypes in Cephalopods: Brain Diversity and Its Correlation With Species Habits, Life History, and Physiological Adaptations

Front Neuroanat. 2021 Feb 2:14:565109. doi: 10.3389/fnana.2020.565109. eCollection 2020.

Abstract

Here we analyze existing quantitative data available for cephalopod brains based on classical contributions by J.Z. Young and colleagues, to cite some. We relate the relative brain size of selected regions (area and/or lobe), with behavior, life history, ecology and distribution of several cephalopod species here considered. After hierarchical clustering we identify and describe ten clusters grouping 52 cephalopod species. This allows us to describe cerebrotypes, i.e., differences of brain composition in different species, as a sign of their adaptation to specific niches and/or clades in cephalopod molluscs for the first time. Similarity reflecting niche type has been found in vertebrates, and it is reasonable to assume that it could also occur in Cephalopoda. We also attempted a phylogenetic PCA using data by Lindgren et al. (2012) as input tree. However, due to the limited overlap in species considered, the final analysis was carried out on <30 species, thus reducing the impact of this approach. Nevertheless, our analysis suggests that the phylogenetic signal alone cannot be a justification for the grouping of species, although biased by the limited set of data available to us. Based on these preliminary findings, we can only hypothesize that brains evolved in cephalopods on the basis of different factors including phylogeny, possible development, and the third factor, i.e., life-style adaptations. Our results support the working hypothesis that the taxon evolved different sensorial and computational strategies to cope with the various environments (niches) occupied in the oceans. This study is novel for invertebrates, to the best of our knowledge.

Keywords: adaptation; brain diversity; cephalopods; evolution; neuroecology.