We examined the prevalence and transmission of the fosA3 gene among Citrobacter freundii isolates from flowers and the retail environments. We identified 11 fosfomycin-resistant C. freundii strains (>256 μg/mL) from 270 samples that included petals (n = 7), leaves (n = 2), dust (n = 1) and water (n = 1). These 11 isolates were multidrug-resistant and most were simultaneously resistant to fosfomycin, cefotaxime, ciprofloxacin and amikacin. Consistently, all 11 isolates also possessed bla CTX-M- 14, bla CMY- 65 / 122, aac(6')-Ib-cr, qnrS1, qnrB13/6/38 and rmtB. These fosA3-positive isolates were assigned to two distinct PFGE patterns and one (n = 9) predominated indicating clonal expansion of fosA3-positive isolates across flower markets and shops. Correspondingly, fosA3 was co-transferred with bla CTX-M- 14 via two plasmid types by conjugation possessing sizes of 110 kb (n = 9) and 260 kb (n = 2). Two representatives were fully sequenced and p12-1 and pS39-1 possessed one and two unclassified replicons, respectively. These plasmids shared a distinctive and conserved backbone in common with fosA3-carrying C. freundii and other Enterobacteriaceae from human and food animals. However, the fosA3-bla CTX-M- 14-containing multidrug resistance regions on these untypable plasmids were highly heterogeneous. To the best of our knowledge, this is the first report of fosA3 and bla CTX-M- 14 that were present in bacterial contaminants from flower shops and markets. These findings underscore a public health threat posed by untypable and transferable p12-1-like and pS39-1-like plasmids bearing fosA3-bla CTX-M- 14 that could circulate among Enterobacteriaceae species and in particular C. freundi in environmental isolates.
Keywords: Citrobacter freundii; blaCTX–M–14; flower; fosA3; fosfomycin-resistance.
Copyright © 2021 Cheng, Fang, Ge, Wang, He, Lu, Zhong, Wang, Yu, Lian, Liao, Sun and Liu.