The burgeoning interest in synthesis and biological applications of 1,6-naphthyridines reflects the importance of 1,6-naphthyridines in the synthetic as well as medicinal chemistry fields. Specially, 1,6-naphthyridines are pharmacologically active, with variety of applications such as anticancer, anti-human immunodeficiency virus (HIV), anti-microbial, analgesic, anti-inflammatory and anti-oxidant activities. Although collective recent synthetic developments have paved a path to a wide range of functionalized 1,6-naphthyridines, a complete correlation of synthesis with biological activity remains elusive. The current review focuses on recent synthetic developments from the last decade and a thorough study of the anticancer activity of 1,6-naphthyridines on different cancer cell lines. Anticancer activity has been correlated to 1,6-naphthyridines using the literature on the structure-activity relationship (SAR) along with molecular modeling studies. Exceptionally, at the end of this review, the utility of 1,6-naphthyridines displaying activities other than anticancer has also been included as a glimmering extension.
Keywords: 1,6-Naphthyridines; Anticancer activity; Cancer cell lines; Mechanism of action; Molecular modeling studies; Structural–activity relationship; Synthetic approaches.