Plasma cells shape the mesenchymal identity of ovarian cancers through transfer of exosome-derived microRNAs

Sci Adv. 2021 Feb 24;7(9):eabb0737. doi: 10.1126/sciadv.abb0737. Print 2021 Feb.

Abstract

Ovarian cancer represents a highly lethal disease that poses a substantial burden for females, with four main molecular subtypes carrying distinct clinical outcomes. Here, we demonstrated that plasma cells, a subset of antibody-producing B cells, were enriched in the mesenchymal subtype of high-grade serous ovarian cancers (HGSCs). Plasma cell abundance correlated with the density of mesenchymal cells in clinical specimens of HGSCs. Coculture of nonmesenchymal ovarian cancer cells and plasma cells induced a mesenchymal phenotype of tumor cells in vitro and in vivo. Phenotypic switch was mediated by the transfer of plasma cell-derived exosomes containing miR-330-3p into nonmesenchymal ovarian cancer cells. Exosome-derived miR-330-3p increased expression of junctional adhesion molecule B in a noncanonical fashion. Depletion of plasma cells by bortezomib reversed the mesenchymal characteristics of ovarian cancer and inhibited in vivo tumor growth. Collectively, our work suggests targeting plasma cells may be a novel approach for ovarian cancer therapy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Proliferation / genetics
  • Exosomes* / genetics
  • Exosomes* / metabolism
  • Female
  • Humans
  • Mesenchymal Stem Cells* / metabolism
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Ovarian Neoplasms* / genetics
  • Ovarian Neoplasms* / metabolism
  • Plasma Cells / metabolism

Substances

  • MicroRNAs