Catalytic combustion is a promising way to remove trace amounts of CH4 to alleviate serious environmental concerns. However, the reactivity of a catalyst at low temperature is usually limited because of the difficulty to activate the C-H bond of methane. Herein, we design a Pd(PdO)/Co3O4@SiO2 bimetallic oxide core-shell catalyst which shows much higher activity in the methane combustion reaction compared with Pd(PdO)/SiO2 and Co3O4@SiO2 catalysts without a core-shell structure. The T50% and T90% of Pd(PdO)/Co3O4@SiO2 are 357 °C and 445 °C, respectively, which decrease by 67 °C and 55 °C in comparison with those of Pd(PdO)/SiO2. Extensive characterization demonstrates that the bimetallic oxide core-shell structure can effectively enhance the metal interaction between Pd and Co, which can weaken the strength of the Co-O bond in Pd(PdO)/Co3O4@SiO2. The weakening of the Co-O bond could promote the release of more lattice oxygen species to participate in the C-H breaking, resulting in superior catalytic performance in methane combustion at low temperature.