Infectious endocarditis is a life-threatening disease, and diagnostics are urgently needed to accurately diagnose this disease especially in the case of prosthetic valve endocarditis. We show here that maltohexaose conjugated to indocyanine green (MH-ICG) can detect Staphylococcus aureus (S. aureus) infection in a rat model of infective endocarditis. The affinity of MH-ICG to S. aureus was determined and had a Km and Vmax of 5.4 μM and 3.0 X 10-6 μmol/minutes/108 CFU, respectively. MH-ICG had no detectable toxicity to mammalian cells at concentrations as high as 100 μM. The in vivo efficiency of MH-ICG in rats was evaluated using a right heart endocarditis model, and the accumulation of MH-ICG in the bacterial vegetations was 2.5 ± 0.2 times higher than that in the control left ventricular wall. The biological half-life of MH-ICG in healthy rats was 14.0 ± 1.3 minutes, and approximately 50% of injected MH-ICG was excreted into the feces after 24 hours. These data demonstrate that MH-ICG was internalized by bacteria with high specificity and that MH-ICG specifically accumulated in bacterial vegetations in a rat model of endocarditis. These results demonstrate the potential efficacy of this agent in the detection of infective endocarditis.