In chronic kidney disease (CKD), calcium-sensing receptor (CaSR) expression and function have been extensively studied in parathyroid tissue and vascular tissues. To examine whether similar changes occurred in other tissues, we measured total and surface CaSR expression in monocytes of patients with various stages of CKD and healthy volunteers respectively in cross-sectional studies. We further explored in vitro the impact of uremic serum on CaSR expression in monocytes (U937 and THP-1 cell lines), and whether human peripheral blood mononuclear cells or U937 and THP-1 monocytes might modify vascular calcium deposition in rat carotid arteries in vitro. CKD was associated with a decrease in peripheral blood mononuclear cell CaSR expression both in total and at the monocyte surface alone (43% and 34%, respectively in CKD stages 4-5). This decrease was associated with a reduction in the ability of monocytes to inhibit vascular calcification in vitro. Pretreatment with the calcimimetic NPSR568 of peripheral blood mononuclear cells isolated from patients with CKD significantly improved monocyte capacity to reduce carotid calcification in vitro. The fewer peripheral blood mononuclear cells expressing cell surface CaSR, the more calcimimetic treatment enhanced the decrease of carotid calcium content. Thus, we demonstrate that monocyte CaSR expression is decreased in patients with CKD and provide in vitro evidence for a potential role of this decrease in the promotion of vascular calcification. Hence, targeting this alteration or following monocyte CaSR expression as an accessible marker might represent a promising therapeutic strategy in CKD-associated arterial calcification.
Keywords: calcium-sensing receptor; chronic kidney disease; monocytes; translational medical research; vascular calcification.
Copyright © 2021 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.