In the past decades, defect engineering has become an effective strategy to significantly improve the hydrogen evolution reaction (HER) efficiency of electrocatalysts. In this work, a facile chemical vapor deposition (CVD) method is firstly adopted to demonstrate defect engineering in high-efficiency HER electrocatalysts of vanadium diselenide nanostructures. For practical applications, the conductive substrate of carbon cloth (CC) is selected as the growth substrate. By using a four-time CVD method, uniform three-dimensional microflowers with defect-rich small nanosheets on the surface are prepared directly on the CC substrate, displaying a stable HER performance with a low Tafel slope value of 125 mV dec-1and low overpotential voltage of 295 mV at a current density of 10 mA cm-2in alkaline electrolyte. Based on the results of x-ray photoelectron spectra and density functional theory calculations, the impressive HER performance originates from the Se vacancy-related active sites of small nanosheets, while the microflower/nanosheet homoepitaxy structure facilitates the carrier flow between the active sites and conductive substrate. All the results present a new route to achieve defect engineering using the facile CVD technique, and pave a novel way to prepare high-activity layered electrocatalysts directly on a conductive substrate.
Keywords: 3D microflowers/nanosheets; chemical vapor deposition; defect engineering; hydrogen evolution reaction; vanadium diselenide.
© 2021 IOP Publishing Ltd.