Synthesis, characterization and biological activity of bis[3-ethyl-4-aryl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(i) complexes

Dalton Trans. 2021 Mar 28;50(12):4270-4279. doi: 10.1039/d0dt03902k. Epub 2021 Mar 10.

Abstract

A series of bis[3-ethyl-4-aryl-5-(2-methoxypyridin-5-yl)-1-propyl-1,3-dihydro-2H-imidazol-2-ylidene]gold(i) complexes (2a-f) containing methyl, fluoro or methoxy substituents at various positions in the 4-aryl ring was synthesized and evaluated for their anti-cancer properties in A2780 (wild-type and Cisplatin-resistant) ovarian carcinoma as well as LAMA 84 (imatinib-sensitive and -resistant) and HL-60 leukemia cell lines. The bis-NHC gold(i) complexes were more active compared to their related mono-NHC gold(i) analogues and reduced proliferation and metabolic activity in a low micromolar range. With the exception of 2d (3-F), the compounds displayed higher potency than the established drugs Auranofin and Cisplatin. The lack of effects against non-cancerous lung fibroblast SV-80 cells indicated a high selectivity towards tumor cells. All tested complexes generated reactive oxygen species in A2780cis cells; however, the induction of apoptosis was very low. Furthermore, thioredoxin reductase is not the main target of these complexes, because its inhibition pattern did not correlate with their biological activity.

MeSH terms

  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / metabolism
  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Drug Screening Assays, Antitumor
  • Humans
  • Imidazoles / chemistry
  • Imidazoles / metabolism
  • Imidazoles / pharmacology*
  • Molecular Structure
  • Reactive Oxygen Species / metabolism

Substances

  • Antineoplastic Agents
  • Imidazoles
  • Reactive Oxygen Species
  • imidazole