When a microparticle is trapped at a fluid interface, particle's electrical charge and weight combine to deform the interface. Such deformation is expected to affect the particle diffusion via hydrodynamics boundary conditions. Using available models of particle-induced electrostatic deformation of the interface and particle dynamics at the interface, we are able to analytically predict particle diffusion coefficient values in a large range of particle's contact angle and size. This might offer a solid background of numerical values to compare with for future experimental studies in the field of particle diffusion at a fluid interface.