Halofuginone, a promising drug for treatment of pulmonary hypertension

Br J Pharmacol. 2021 Sep;178(17):3373-3394. doi: 10.1111/bph.15442. Epub 2021 Jul 31.

Abstract

Background and purpose: Halofuginone is a febrifugine derivative originally isolated from Chinese traditional herb Chang Shan that exhibits anti-hypertrophic, anti-fibrotic and anti-proliferative effects. We sought to investigate whether halofuginone induced pulmonary vasodilation and attenuates chronic hypoxia-induced pulmonary hypertension (HPH).

Experimental approach: Patch-clamp experiments were conducted to examine the activity of voltage-dependent Ca2+ channels (VDCCs) in pulmonary artery smooth muscle cells (PASMCs). Digital fluorescence microscopy was used to measure intracellular Ca2+ concentration in PASMCs. Isolated perfused and ventilated mouse lungs were used to measure pulmonary artery pressure (PAP). Mice exposed to hypoxia (10% O2 ) for 4 weeks were used as model of HPH for in vivo experiments.

Key results: Halofuginone increased voltage-gated K+ (Kv ) currents in PASMCs and K+ currents through KCNA5 channels in HEK cells transfected with KCNA5 gene. HF (0.03-1 μM) inhibited receptor-operated Ca2+ entry in HEK cells transfected with calcium-sensing receptor gene and attenuated store-operated Ca2+ entry in PASMCs. Acute (3-5 min) intrapulmonary application of halofuginone significantly and reversibly inhibited alveolar hypoxia-induced pulmonary vasoconstriction dose-dependently (0.1-10 μM). Intraperitoneal administration of halofuginone (0.3 mg·kg-1 , for 2 weeks) partly reversed established PH in mice.

Conclusion and implications: Halofuginone is a potent pulmonary vasodilator by activating Kv channels and blocking VDCC and receptor-operated and store-operated Ca2+ channels in PASMCs. The therapeutic effect of halofuginone on experimental PH is probably due to combination of its vasodilator effects, via inhibition of excitation-contraction coupling and anti-proliferative effects, via inhibition of the PI3K/Akt/mTOR signalling pathway.

Keywords: Ca2+ channel; K+ channel; KCNA5; Pulmonary arterial hypertension; halofuginone; smooth muscle cell; treatment.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium
  • Hypertension, Pulmonary* / drug therapy
  • Hypoxia / drug therapy
  • Mice
  • Myocytes, Smooth Muscle
  • Pharmaceutical Preparations*
  • Phosphatidylinositol 3-Kinases
  • Piperidines
  • Pulmonary Artery
  • Quinazolinones

Substances

  • Pharmaceutical Preparations
  • Piperidines
  • Quinazolinones
  • halofuginone
  • Calcium