Processing speed on cognitive tasks relies upon efficient communication between widespread regions of the brain. Recently, novel methods of quantifying network communication like 'navigation efficiency' have emerged, which aim to be more biologically plausible compared to traditional shortest path length-based measures. However, it is still unclear whether there is a direct link between these communication measures and processing speed. We tested this relationship in forty-five healthy adults (27 females), where processing speed was defined as decision-making time and measured using drift rate from the hierarchical drift diffusion model. Communication measures were calculated from a graph theoretical analysis of the whole-brain structural connectome and of a task-relevant fronto-parietal structural subnetwork, using the large-scale Desikan-Killiany atlas. We found that faster processing speed on trials that require greater cognitive control are correlated with higher navigation efficiency (of both the whole-brain and the task-relevant subnetwork). In contrast, faster processing speed on trials that require more automatic processing are correlated with shorter path length within the task-relevant subnetwork. Our findings reveal that differences in the way communication is modelled between shortest path length and navigation may be sensitive to processing of automatic and controlled responses, respectively. Further, our findings suggest that there is a relationship between the speed of cognitive processing and the structural constraints of the human brain network.
Keywords: Communication measures; Drift diffusion model; Graph theory; Navigation efficiency; Processing speed; Structural connectomics.