The basic mechanisms by which brain insults, such as trauma, stroke or status epilepticus produce epilepsy are not completely understood, and effective preventive measures and treatment are still not available in the clinical setting. Over the last 2 decades we have conducted several studies with animal models of epilepsy (rodents and non-human primates) and demonstrated that drugs that modify neuronal plastic processes, such as anticholinergic agents (e.g., antimuscarinic compounds), if administered soon after brain injury and over a period of 10-20 days, have the potential to modify the natural course of post-traumatic epilepsy. To that end treatment with scopolamine showed promising results as a candidate agent in both the pilocarpine and kainate models. We then showed that biperiden, yet another cholinergic antagonist acting in the muscarinic receptor, that is widely used to treat Parkinson's disease, also decreased the incidence and intensity of spontaneous epileptic seizures, delaying their appearance in the pilocarpine model of epilepsy. In other words, biperiden showed to be a potential candidate to be further investigated as an antiepileptogenic agent. Accordingly, we tested the safety of biperiden in a small group of patients (as a small phase II safety assessment) and confirmed its safety in the context of traumatic brain injury (TBI). Now, we provide information on our ongoing project to evaluate the efficacy of biperiden in preventing the development of epilepsy in patients that suffered TBI, in a double blind, randomized, placebo-controlled trial.
Keywords: Biperiden; Epileptogenesis; Post-traumatic epilepsy; Scopolamine; Seizure; Status epilepticus.
Copyright © 2021 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.