Herein, we show how the chaotropic effect arising from reduced molybdate ions in acidified aqueous solution is able to amplify drastically weak supramolecular interactions. Time-resolved Small Angle X-ray Scattering (SAXS) analysis suggests that molybdenum-blue oligomeric species form huge aggregates in the presence of γ-cyclodextrin (γ-CD) which results in the fast formation of nanoscopic {Mo154 }-based host-guest species, while X-ray diffraction analysis reveals that the ending-point of the scenario results in an unprecedented three-component well-ordered core-shell-like motif. A similar arrangement was found by using preformed hexarhenium chalcogenide-type cluster [Re6 Te8 (CN)6 ]4- as exogenous guest. This seminal work brings better understanding of the self-assembly processes in general and gives new opportunities for practical applications in the design of complex multicomponent materials via the simplicity of the non-covalent chemistry.
Keywords: clusters; cyclodextrin; inclusion compounds; polyoxometalates (POMs); supramolecular chemistry.
© 2021 Wiley-VCH GmbH.