A methanethiol-to-olefins (MtTO) equivalent of methanol-to-olefins (MTO) chemistry is demonstrated. CH3SH can be converted to ethylene and propylene in a similar manner as CH3OH over SSZ-13 zeolite involving a hydrocarbon pool mechansim. Methylated aromatic intermediates were identified by 13C NMR analysis. Comparison of MtTO and MTO chemistry provides clues about the mechanism of C-C bond formation and catalyst deactivation.