Naive CD8+ T cell activation results in an autonomous program of cellular proliferation and differentiation. However, the mechanisms that underpin this process are unclear. Here, we profile genome-wide changes in chromatin accessibility, gene transcription, and the deposition of a key chromatin modification (H3K27me3) early after naive CD8+ T cell activation. Rapid upregulation of the histone demethylase KDM6B prior to the first cell division is required for initiating H3K27me3 removal at genes essential for subsequent T cell differentiation and proliferation. Inhibition of KDM6B-dependent H3K27me3 demethylation limits the magnitude of an effective primary virus-specific CD8+ T cell response and the formation of memory CD8+ T cell populations. Accordingly, we define the early spatiotemporal events underpinning early lineage-specific chromatin reprogramming that are necessary for autonomous CD8+ T cell proliferation and differentiation.
Keywords: CD8(+) T cell; T cell activation; T cell memory; chromatin; histone demethylase; virus immunity.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.