We present a collagen-mimetic protein of bacterial origin based upon a modified subdomain of the collagen-like Sc12 protein from Streptococcus pyogenes, as an alternative collagen-like biomaterial platform that is highly soluble, forms stable, homogeneous, fluid-like solutions at elevated concentrations, and that can be efficiently fabricated into hydrogel materials over a broad range of pH conditions. This extended bacterial collagen-like (eBCL) protein is expressed in a bacterial host and purified as a trimeric assembly exhibiting a triple helical secondary structure in its collagen-like subdomain that is stable near physiological solution conditions (neutral pH and 37 °C), as well as over a broad range of pH conditions. We also show how this sequence can be modified to include biofunctional attributes, in particular, the Arg-Gly-Asp (RGD) sequence to elicit integrin-specific cell binding, without loss of structural function. Furthermore, through the use of EDC-NHS chemistry, we demonstrate that members of this eBCL protein system can be covalently cross-linked to fabricate transparent hydrogels with high protein concentrations (at least to 20% w/w). These hydrogels are shown to possess material properties and resistance to enzymatic degradation that are comparable or superior to a type I collagen control. Moreover, such hydrogels containing the constructs with the RGD integrin-binding sequence are shown to promote the adhesion, spreading, and proliferation of C2C12 and 3T3 cells in vitro. Due to its enhanced solubility, structural stability, fluidity at elevated concentrations, ease of modification, and facility of cross-linking, this eBCL collagen-mimetic system has potential for numerous biomedical material applications, where the ease of processing and fabrication and the facility to tailor the sequence for specific biological functionality are desired.
Keywords: biomimetic; collagen; hydrogel; recombinant proteins.