Background: In TB, therapeutic drug monitoring (TDM) is recommended for linezolid; however, implementation is challenging in endemic settings. Non-invasive saliva sampling using a mobile assay would increase the feasibility of TDM.
Objectives: To validate a linezolid saliva assay using a mobile UV spectrophotometer.
Methods: The saliva assay was developed using NanoPhotometer NP80® and linezolid concentrations were quantified using second-order derivative spectroscopy. Sample preparation involved liquid-liquid extraction of saliva, using saturated sodium chloride and ethyl acetate at 1:1:3 (v/v/v). The assay was validated for accuracy, precision, selectivity, specificity, carry-over, matrix effect, stability and filters. Acceptance criteria were bias and coefficient of variation (CV) <15% for quality control (QC) samples and <20% for the lower limit of quantification (LLOQ).
Results: Linezolid concentrations correlated with the amplitude between 250 and 270 nm on the second-order derivative spectra. The linezolid calibration curve was linear over the range of 3.0 to 25 mg/L (R2 = 0.99) and the LLOQ was 3.0 mg/L. Accuracy and precision were demonstrated with bias of -7.5% to 2.7% and CV ≤5.6%. The assay met the criteria for selectivity, matrix effect, carry-over, stability (tested up to 3 days) and use of filters (0.22 μM Millex®-GV and Millex®-GP). Specificity was tested with potential co-medications. Interferences from pyrazinamide, levofloxacin, moxifloxacin, rifampicin, abacavir, acetaminophen and trimethoprim were noted; however, with minimal clinical implications on linezolid dosing.
Conclusions: We validated a UV spectrophotometric assay using non-invasive saliva sampling for linezolid. The next step is to demonstrate clinical feasibility and value to facilitate programmatic implementation of TDM.
© The Author(s) 2021. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: [email protected].