Experimental focusing shocklike dynamics in a nonlocal optical stochastic Kerr medium

Phys Rev E. 2021 Feb;103(2-1):022701. doi: 10.1103/PhysRevE.103.022701.

Abstract

We experimentally study the propagating of an optical intensity jump discontinuity in a nonlocal stochastic Kerr focusing nematic liquid crystal cell. We show both theoretically and experimentally that nonlocality opens a route towards beam steering in our system. Indeed, the discontinuity trajectory follows a curve that bends with the injected power. Despite the stochastic nature of the medium and the constant presence of transverse instabilities, the development of a focusing shocklike dynamics is shown to survive. The distance Z_{s} for the focusing shock to occur follows a power law with the beam power P according to Z_{s}∝P^{χ}, with χ=-4/3, as for shock dynamics in self-defocusing media.