Recycling of scrap metal into artisanal cookware is widespread in poorly resourced countries. The aim of the study was to determine the risk of metal exposure from the use of artisanal cookware available in South Africa. Twenty cookware samples were purchased from local manufacturers and informal traders across South Africa. Aluminum and silicon concentrations were determined using XRF and the total content of 18 elements (Ag, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn) were evaluated using ICPMS. Leaching of metals from cut pieces of cookware over a 2-h period of boiling in a 3% acetic acid solution was repeated 3 times and revealed multi-metal migration that was compared to EU maximum permissible levels. The mean Al migration of 509 mg L-1 was over 100 times the EU maximum permissible level allowed for cookware. Lead was detected in all samples with 11 (55%), 12 (60%) and 9 (45%) of samples being over the maximum EU permissible level (10 μg Pb L-1) for 1st, 2nd and 3rd migrations respectively. The mean As migration concentrations in the first leaching event ranged from 0.23 to 24.1 μg L-1 with four pots (20%) over the maximum EU permissible limit for As (2 μg L-1). Notably, all four pots were well below the maximum EU permissible As limit by the 3rd migration. Cadmium and mercury were detected in each pot across all three migrations however the levels were relatively low. Transmission electron microscopy revealed dramatic changes in surface structure after leaching of cookware.
Keywords: Aluminum cookware; Exposure; ICPMS; Metals; Toxicity.
Copyright © 2019. Published by Elsevier B.V.