Several air pollution episodes occurred in Beijing before and after the 2014 Asia-Pacific Economic Cooperation (APEC) summit, during which air-pollution control measures were implemented. Within this autumn-winter transit season, domestic heating started. Such interesting period merits comprehensive chemical characterization, particularly the organic species, to look into the influence of additional heating sources and the control measures on air pollution. Therefore, this study performed daily and 6h time resolved PM2.5 sampling from the 24th October to 7th December, 2014, followed by comprehensive chemical analyses including water-soluble ions, elements and organic source-markers. Apparent alterations of chemical profiles were observed with the initiation of domestic heating. Through positive matrix factorization (PMF) source apportionment modeling, six PM2.5 sources including secondary inorganic aerosol (SIA), traffic emission, coal combustion, industry emission, biomass burning and dust were separated and identified. Coal combustion was successfully distinguished from traffic emission by hopane diagnostic ratio. The result of this study reveals a gradual shift of dominating sources for PM pollution episodes from SIA to primary sources after starting heating. BaPeq toxicity from coal combustion increased on average by several to dozens of times in the heating period, causing both long-term and short-term health risk. Air mass trajectory analysis highlights the regional influence of the industry emissions from the area south to Beijing. Control measures taken during APEC were found to be effective for reducing industry source, but less effective in reducing the overall PM2.5 level. These results provide implications for policy making regarding appropriate air pollution control measures.
Keywords: Air pollution; BaP(eq); Beijing; Chemical composition; PM(2.5); Positive matrix factorization.
Copyright © 2021 Elsevier Ltd. All rights reserved.