Traditionally the biotransformation of antibody drug conjugates (ADCs) has been evaluated by affinity capture on streptavidin magnetic beads coated with a biotinylated capture reagent. To reduce the complexity of the analyte, the affinity captured ADCs are digested with enzymes ("on-bead" or after elution), and/or interchain disulfides are reduced to generate LC and HC fragments prior to mass spectrometry analysis. The "on-bead" enzymatic digestion with IdeS and PNGase F is not efficient and requires longer incubation times to achieve complete Fc and N-glycan removal. This results in a prolonged sample preparation time (7-18 h) and is not suitable for labile ADCs due to the possibility of assay-induced artifacts. To address these challenges, we developed an affinity capture method, where the ADCs are first captured onto streptavidin cartridges coated with a biotinylated generic capture reagent, followed by a 15 min "on-cartridge" digestion with IdeS or PNGase F. The ADCs are then eluted and directly analyzed by LC-HRMS. This method was successfully applied for the biotransformation assessment of site-specific ADCs with payload conjugated on the Fab or Fc. The reduced complexity of the analyte (Fc and N-glycan removal) combined with HRMS enabled sensitive and accurate identification of minor mass change catabolites and changes in the DAR distribution. This automated cartridge-based affinity capture method is fast with a total sample preparation time of less than 4 h (hands-on time of less than 1 h) and can be utilized for any human mAb/ADC independent of isotype (IgG1, IgG2, and IgG4).