The genus Citrobacter is commonly found in environmental and industrial settings, some members of which have been used for bioremediation of heavy metals owing to the absorption ability of their biofilms. Although our previous studies have found that the outer membrane protein A (OmpA) contributes to the process of Citrobacter werkmanii biofilm formation, the underlying mechanisms remain elusive. Therefore, we deleted ompA from the genome of C. werkmanii and investigated its phenotypes in comparison to the wild type strain (WT) and the complementary strain using biochemical and molecular techniques including RNA-Seq. Our results demonstrated that the deletion of ompA led to an increase in biofilm formation on both polystyrene and glass surfaces due to upregulation of some biofilm formation related genes. Meanwhile, swimming ability, which is mediated by activation of flagellar assembly genes, was increased on semi-solid plates in the ∆ompA strain when compared with WT. Additionally, inactivation of ompA also caused increased 1,2-benzisothiazolin-3-one (BIT) resistance, differential responses to Ca2+ stress, curli protein expression and cellulose production. Finally, ∆ompA caused differential expression of a total of 1470 genes when compared with WT, of which 146 were upregulated and 1324 were downregulated. These genes were classified into different Gene Ontology (GO) and KEGG pathways. In summary, ompA in C. werkmanii contributes to a variety of biological functions and may act as a target site to modulate biofilm formation. KEY POINTS: • ompA is a negative regulator for biofilm formation by C. werkmanii. • ompA inhibits swimming motility of C. werkmanii. • ompA deletion causes different expression profiles in C. werkmanii.
Keywords: Biofilm formation; Citrobacter werkmanii; Divalent ions; RNA-Seq; Swimming ability.