There is evidence that research on sleep among New World monkeys may provide important knowledge related to the evolution of sleep more broadly in the primate order. Digital electroencephalographic (EEG) analyses provide essential knowledge on sleep in the spider monkey. Recently, specific EEG bands related to sleep in these animals have been obtained using principal component analysis, but the exact spatio-temporal distribution of these EEG bands in this species has not yet been analyzed. This study determined the topographic distribution of the EEG spectral power of ad hoc broad bands during rapid eye movement sleep, nonrapid eye movement sleep, and wakefulness. Superficial EEG activity was obtained from the occipital, frontal, and central areas of six young adult male monkeys housed in a laboratory. During wakefulness, occipital areas showed high absolute power in the 1-3, 3-12, and 11-30 Hz ranges, while during nonrapid eye movement 1 sleep the highest absolute power was in the 13-30 Hz range. During nonrapid eye movement 3 sleep, frontal and central areas showed a high absolute power in the 18-19 Hz range. Finally, the right central area showed a high absolute power in the 20-30 Hz range during rapid eye movement sleep. This topographic distribution of EEG bands could represent the brain organization required for arousal and mnemonic processing during sleep in the spider monkey.
Keywords: Fast Fourier transform; New World monkeys; sleep; topographic EEG analysis.
© 2021 Wiley Periodicals LLC.