Monitoring deep-tissue oxygenation with a millimeter-scale ultrasonic implant

Nat Biotechnol. 2021 Jul;39(7):855-864. doi: 10.1038/s41587-021-00866-y. Epub 2021 Mar 29.

Abstract

Vascular complications following solid organ transplantation may lead to graft ischemia, dysfunction or loss. Imaging approaches can provide intermittent assessments of graft perfusion, but require highly skilled practitioners and do not directly assess graft oxygenation. Existing systems for monitoring tissue oxygenation are limited by the need for wired connections, the inability to provide real-time data or operation restricted to surface tissues. Here, we present a minimally invasive system to monitor deep-tissue O2 that reports continuous real-time data from centimeter-scale depths in sheep and up to a 10-cm depth in ex vivo porcine tissue. The system is composed of a millimeter-sized, wireless, ultrasound-powered implantable luminescence O2 sensor and an external transceiver for bidirectional data transfer, enabling deep-tissue oxygenation monitoring for surgical or critical care indications.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Humans
  • Monitoring, Physiologic*
  • Oxygen / metabolism*
  • Prostheses and Implants*
  • Sheep
  • Signal Processing, Computer-Assisted
  • Telemetry / instrumentation*
  • Ultrasonics*

Substances

  • Oxygen