The fracture of polymer materials is a multiscale process starting with the scission of a single molecular bond advancing to a site of failure within the bulk. Quantifying the bonds broken during this process remains a big challenge yet would help to understand the distribution and dissipation of macroscopic mechanical energy. We here show the design and synthesis of fluorogenic molecular optical force probes (mechanofluorophores) covering the entire visible spectrum in both absorption and emission. Their dual fluorescent character allows to track non-broken and broken bonds in dissolved and bulk polymers by fluorescence spectroscopy and microscopy. Importantly, we develop an approach to determine the absolute number and relative fraction of intact and cleaved bonds with high local resolution. We anticipate that our mechanofluorophores in combination with our quantification methodology will allow to quantitatively describe fracture processes in materials ranging from soft hydrogels to high-performance polymers.
Keywords: fluorescence; fracture; mechanochemistry; microscopy; polymers.
© 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.