Electrocatalytic, Kinetic, and Mechanism Insights into the Oxygen-Reduction Catalyzed Based on the Biomass-Derived FeOx @N-Doped Porous Carbon Composites

Small. 2021 May;17(19):e2007326. doi: 10.1002/smll.202007326. Epub 2021 Mar 30.

Abstract

A valid strategy for amplifying the oxygen reduction reaction (ORR) efficiency of non-noble electrocatalyst in both alkaline and acid electrolytes by decorated with a layer of biomass derivative nitrogen-doped carbon (NPC) is proposed. Herein, a top-down strategy for the generally fabricating NPC matrix decorated with trace of metal oxides nanoparticles (FeOx NPs) by a dual-template assisted high-temperature pyrolysis process is reported. A high-activity FeOx /FeNC (namely Hemin/NPC-900) ORR electrocatalyst is prepared via simply carbonizing the admixture of Mg5 (OH)2 (CO3 )4 and NaCl as dual-templates, melamine and acorn shells as nitrogen and carbon source, hemin as a natural iron and nitrogen source, respectively. Owing to its unique 3D porous construction, large BET areas (819.1 m2 ∙g-1 ), and evenly dispersed active sites (FeNx , CN, and FeO parts), the optimized Hemin/NPC-900 catalyst displays comparable ORR catalytic activities, remarkable survivability to methanol, and preferable long-term stability in both alkali and acid electrolyte compared with benchmark Pt/C. More importantly, density function theory computations certify that the interaction between Fe3 O4 nanoparticles and arm-GN (graphitic N at armchair edge) active sites can effectually promote ORR electrocatalytic performance by a lower overpotential of 0.81 eV. Accordingly, the research provides some insight into design of low-cost non-precious metal ORR catalysts in theory and practice.

Keywords: Fe N co-doped; biomass derivative; density function theory; electrocatalysts; oxygen reduction reaction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomass
  • Carbon*
  • Catalysis
  • Oxidation-Reduction
  • Oxygen*
  • Porosity

Substances

  • Carbon
  • Oxygen