Introduction: Genome-wide association studies have led to numerous genetic loci associated with Alzheimer's disease (AD). Whole-genome sequencing (WGS) now permits genome-wide analyses to identify rare variants contributing to AD risk.
Methods: We performed single-variant and spatial clustering-based testing on rare variants (minor allele frequency [MAF] ≤1%) in a family-based WGS-based association study of 2247 subjects from 605 multiplex AD families, followed by replication in 1669 unrelated individuals.
Results: We identified 13 new AD candidate loci that yielded consistent rare-variant signals in discovery and replication cohorts (4 from single-variant, 9 from spatial-clustering), implicating these genes: FNBP1L, SEL1L, LINC00298, PRKCH, C15ORF41, C2CD3, KIF2A, APC, LHX9, NALCN, CTNNA2, SYTL3, and CLSTN2.
Discussion: Downstream analyses of these novel loci highlight synaptic function, in contrast to common AD-associated variants, which implicate innate immunity and amyloid processing. These loci have not been associated previously with AD, emphasizing the ability of WGS to identify AD-associated rare variants, particularly outside of the exome.
Keywords: Alzheimer's disease; LOAD; RVAS; family-based association study; neuronal development; rare variants; synaptic function; whole-genome sequencing.
© 2021 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.