Sarcomas are aggressive tumors which often show a poor response to current treatments. As a promising therapeutic alternative, we focused on mithramycin (MTM), a natural antibiotic with a promising anti-tumor activity but also a relevant systemic toxicity. Therefore, the encapsulation of MTM in nano-delivery systems may represent a way to increase its therapeutic window. Here, we designed novel transfersomes and PLGA polymeric micelles by combining different membrane components (phosphatidylcholine, Span 60, Tween 20 and cholesterol) to optimize the nanoparticle size, polydispersity index (PDI) and encapsulation efficiency (EE). Using both thin film hydration and the ethanol injection methods we obtained MTM-loaded transferosomes displaying an optimal hydrodynamic diameter of 100-130 nm and EE values higher than 50%. Additionally, we used the emulsion/solvent evaporation method to synthesize polymeric micelles with a mean size of 228 nm and a narrow PDI, capable of encapsulating MTM with EE values up to 87%. These MTM nano-delivery systems mimicked the potent anti-tumor activity of free MTM, both in adherent and cancer stem cell-enriched tumorsphere cultures of myxoid liposarcoma and chondrosarcoma models. Similarly to free MTM, nanocarrier-delivered MTM efficiently inhibits the signaling mediated by the pro-oncogenic factor SP1. In summary, we provide new formulations for the efficient encapsulation of MTM which may constitute a safer delivering alternative to be explored in future clinical uses.
Keywords: PLGA; chondrosarcoma; encapsulation; liposarcoma; micelles; mithramycin; nanovesicles; sarcoma; transfersomes.