Gliomas are one of the most devastating primary brain tumors which impose significant management challenges to the clinicians. The aggressive behaviour of gliomas is mainly attributed to their rapid proliferation, unravelled genomics and the blood-brain barrier which protects the tumor cells from chemotherapeutic regimens. Suspects of brain tumors are usually assessed by magnetic resonance imaging and computed tomography. These images allow surgeons to decide on the tumor grading, intra-operative pathology, feasibility of surgery, and treatment planning. All these data are compiled manually by physicians, wherein it takes time for the validation of results and concluding the treatment modality. In this context, the arrival of artificial intelligence in this era of personalized medicine, has proven promising performance in the diagnosis and management of gliomas. Starting from grading prediction till outcome evaluation, artificial intelligence-based forefronts have revolutionized oncological research. Interestingly, this approach has also been able to precisely differentiate tumor lesion from healthy tissues. However, till date, their utility in neuro-oncological field remains limited due to the issues pertaining to their reliability and transparency. Hence, to shed novel insights on the "clinical utility of this novel approach on glioma management" and to reveal "the black-boxes that have to be solved for fruitful application of artificial intelligence in neuro-oncology research", we provide in this review, a succinct description of the potential gear of artificial intelligence-based avenues in glioma treatment and the barriers that impede their rapid implementation in neuro-oncology.
Keywords: Artificial intelligence; Glioblastoma multiforme; Machine learning; Neural networks; Oncology.