Ectomycorrhizas play a fundamental role in the function of forest ecosystems, being essential for plant nutrition absorption and soil quality. Many afforestation and reforestation programmes have begun to recover and maintain coastal forests in China, using pine species including Pinus thunbergii. We investigated the ectomycorrhizal colonization status of P. thunbergii in coastal pine forests of the Yellow Sea of China. We identified a total of 53 ectomycorrhizal fungal species in 74 soil samples collected from three sites and found that Thelephoraceae (10 spp.) and Russulaceae (8 spp.) were the most species-rich ectomycorrhizal fungal lineages. Russula sp. 1 was the most abundant species, accounting for 15.3% of the total ectomycorrhizal tips identified. Most of the remaining species were rare. At this small scale, host identity had no significant effect on the ectomycorrhizal fungal community composition (A = 0.036, P = 0.258), but sampling sites did (A = 0.135, P = 0.041). In addition, Na+ and K+ content and soil pH had significant effects on the ectomycorrhizal fungal community. The ectomycorrhizal fungal community associated with different host plants will become an important new direction for research, as ectomycorrhiza may have the potential to improve host capacity to establish in salt-stressed environments. This will provide a theoretical basis and technical support for saline soil reforestation and rehabilitation using pine species with compatible, native ectomycorrhizal fungi in Yellow Sea coastal areas.
Keywords: Ectomycorrhizas; Forest ecosystems; Reforestation and rehabilitation; Salt-stress.