Traditionally, direct-reading instruments have been used to directly determine the concentrations of indoor air pollutants that may exceed the regulation limits. However, these instruments cannot directly assess the potential health hazards of these pollutants to humans. In this study, we developed and improved a bacterial reverse mutation assay (Ames test) by using a direct gas exposure module to directly determine the mutagenicity of indoor air quality using five tester bacterial strains (TA98, TA100, TA102, TA1535, and TA1537). Thereafter, the module was used to evaluate the effects of exposure time, different concentrations of HCHO or toluene, and mutagenic activities. We found that TA100 was the most sensitive strain and was reverted by relatively lower concentrations of 0.035 ppm HCHO. Furthermore, 50 ppm of toluene exposures caused a significant increase in the number of revertant colonies of TA100 without S9 activation at the 1.5-8-h exposure time intervals. Our findings provide new evidence that gaseous HCHO exposure could display weak but direct, time-dependent, and dose-dependent mutagenic activities. The weak, direct-acting, indirect-acting, and time-dependent mutagen of 50 ppm toluene was also confirmed. Moreover, our improved Ames module and the exposure conditions provided in this study can be further applied to evaluate the mutagenicity of indoor air quality.
Keywords: Ames test; C7H8; HCHO; air pollutants; mutagenicity.
© 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.