When egg yolk diacylglycerophosphocholine (PC) liposomes were incubated with human oxyhemoglobin, peroxidation of liposomal lipid was induced, as monitored by an increase of thiobarbituric acid (TBA)-reactive substances, an increase of lipid hydroperoxides and the generation of chemiluminescence in the presence of luminol. During the reaction, cytotoxic substance(s), which induced shedding of acetylcholinesterase-enriched vesicles from human erythrocytes, were produced. Formation of TBA-reactive substances and lipid hydroperoxides preceded generation of chemiluminescence, conversion of oxyhemoglobin to methemoglobin and production of the toxic substances. Either superoxide dismutase or catalase could suppress generation of chemiluminescence, but not other events. Methemoglobin or ferrous ion plus ascorbate could induce peroxidation of the liposomes without production of the cytotoxic substance(s). Synthetic PCs containing both saturated and polyunsaturated fatty acyl chains caused the production of cytotoxic products which induced shedding of vesicles from erythrocytes, whereas those containing only polyunsaturated fatty acyl chains did not, suggesting that the molecular species which can produce cytotoxic products may be phospholipids containing both saturated and polyunsaturated fatty acids. The mechanism of oxyhemoglobin-induced peroxidation of lipids will be also discussed.